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Abstract. This paper introduces the novel Adaptive Peak Price with
Lazy Updates (APPLU) approach for short-term portfolio optimization
(SPO), a method that innovatively combines the Radial Basis Function
(RBF) and a new lazy update approach to address the unique challenges
of SPO. Our approach is tailored to balance the dual objectives of maxi-
mizing returns and minimizing transaction costs, which are critical con-
cerns in dynamically allocating wealth among various assets over time.
Unlike conventional methods that primarily rely directly on peak price
information, APPLU introduces an adaptive peak price using RBFs to
capture continuous depreciation information of assets, thereby alleviat-
ing the aggressive nature of traditional peak price strategies and avoiding
frequent trades. Furthermore, we propose a new lazy update approach
that employs unsquared [*-norm regularization to represent portfolio
changes. This approach contrasts with squared {>-norm regularization,
which disproportionately penalizes larger portfolio changes while being
more lenient towards smaller changes. Thereby, our methodology offers
a more balanced and effective approach to portfolio adjustment. Ex-
tensive experiments conducted on seven real datasets demonstrate that
APPLU outperforms existing strategies in terms of cumulative return
and risk-adjusted return, while effectively controlling transaction costs
and maintaining a moderate wealth accumulation strategy.

Keywords: Short-term portfolio optimization - Lazy update - Radial
basis function - Online learning.

1 Introduction

Short-term portfolio optimization (SPO) [I3] focuses on the continuous and dy-
namic allocation of wealth across various assets over time within the field of
machine learning. Its primary goal is to optimize the cumulative return of a
portfolio, taking into account transaction costs and other practical constraints.
A key challenge in SPO is the necessity of frequent allocation decisions at every
time point, potentially leading to numerous asset trades.

The regularization technique is a primary approach for controlling trans-
action costs. Specifically, the I2-norm squared regularization term is used to
constrain portfolio changes, resulting in a lazy update approach. The Online
Lazy Update (OLU) strategy [4] employs {>-norm squared for portfolio change
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constraints and utilizes {!-norm to induce sparsity in these changes. The Dou-
bly Regularized Portfolio (DRP) [I8] also employs a lazy update approach using
1?-norm squared but introduces sparsity directly to the portfolio itself. Extend-
ing this concept, Online Lazy Update with Group Sparsity [5] leverages sector
information for group sparsity while implementing lazy updates to the portfo-
lio. In addition to the lazy update approach, Transaction Cost Optimization
(TCO) [17] considers the difference of portfolio between market close and open,
using the ['-norm to directly minimize the transaction costs. However, the use
of I2-norm squared in lazy update approach presents two issues due to square
calculations. Firstly, combining /'-norm with {?>-norm squared might lead to an
awkward balance between sparsity and turnover, as evidenced by DRP’s exper-
imental results, which show a more significant effect on turnover than sparsity.
Secondly, [2-norm squared tends to encourage smaller portfolio changes while
disproportionately penalizing larger adjustments.

Many advanced SPO strategies employ peak price for short-term price infor-
mation. For instance, Short-term Sparse Portfolio Optimization [I4], Short-term
Portfolio Optimization with Loss Control [12] and Peak Price Tracking Approach
[3] use the highest asset price within a certain time window to estimate expected
asset prices, capturing investor irrationality and potentially achieving favorable
incomes. However, peak price strategies cannot capture continuous asset depreci-
ation as they omit price information other than the highest price. This limitation
could lead to risky investments and substantial losses. Moreover, being inher-
ently aggressive, peak price strategies might result in high turnover in pursuit
of wealth.

Radial Basis Functions (RBF) have been increasingly acknowledged for their
effectiveness across various applications, notably in portfolio optimization. Their
applicability goes beyond traditional neural network domains, covering function
approximation, clustering, classification, and solving complex nonlinear problems
[9]. This versatility of RBFs also extends to financial modeling, where they have
shown significant potential. For instance, the Adaptive Input and Composite
Trend Representation System [IT] utilizes RBFs to detect subtle trends and pat-
terns in asset prices, embedding them into price prediction models to modulate
the impact of different trends. This inspired us to develop a set of RBFs capable
of effectively capturing continuous depreciation information, complementing our
new lazy update approach.

To address the above-mentioned problems, we introduce the Adaptive Peak
Price with Lazy Updates (APPLU) method for short-term portfolio optimiza-
tion. APPLU effectively narrows the gap between maximizing returns and min-
imizing costs in SPO. Initially, we formulate an adaptive peak price using radial
basis functions to represent the disparity between actual and peak prices, mit-
igating the innate aggressiveness of traditional peak price strategies and better
aligning with the goal of reducing transaction costs. Furthermore, we incorpo-
rate an unsquared [2-norm regularization for portfolio changes, providing a more
transparent representation of these changes compared to the squared /?-norm,
which can lead to disproportionate penalties. Our contributions include:
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— Adaptive Peak Price with RBFs: APPLU uniquely uses Radial Basis
Functions (RBFs) to create an adaptive peak price model. This approach
captures a comprehensive picture of asset prices, improving upon traditional
peak price strategies that only consider the highest prices.

— Unsquared [?>-Norm Regularization: APPLU incorporates an unsquared
I?-norm regularization to manage portfolio changes, providing a consistent
approach to portfolio changes. This method is a departure from the conven-
tional squared [2-norm regularization, ensuring a more balanced and practi-
cal response to market shifts.

— Balanced Strategy: Comprehensive experiments on seven real datasets
demonstrate that APPLU successfully balances the maximization of returns
with the minimization of transaction costs, ensuring a moderate strategy for
wealth accumulation.

2 Problem Setting

In this paper, we use a standard and universal setting of portfolio selection
in machine learning[I2J3/17]. Consider a financial market with m assets for n
period. At the end of the t** period, a non-negative m-dimensional vector p; €

RT(t = 1,2,...,n) represents the close price of assets. A relative price vector
Pt
pPt—1’
between two vectors represents element-wise division in this paper.

[2] is introduced to see the change of asset prices as x; = where a division

At the beginning of the ¢! period, an investment in the market is specified by
a portfolio vector in m dimensional simplex b, € A,,, ;== {b € R7 : 37" b() =1},
where bgl) denotes the proportion of total wealth invested in the ith asset. The
non-negative constrain means no short is allowed and the equality constraint
means that the portfolio is self-financed.

For the t*" trading day, a portfolio b; generated by the portfolio selection
strategy results in a daily return b, x;. When there is a transaction cost rate of

r for each trade in the portfolio re-balancing process, the cumulative wealth can
be determined using the proportional transaction cost model [I5] as:

sieslT|(brs) < (150 -50)) o
t=1 '

r (1) (i)
by ¥x,
b xi1

1)th period. The term (r/2) 7", ‘B,E” - Bi?l represents the transaction cost

where Bg?l = is the price adjusted portfolio of asset 7 in the (¢t —

incurred from the adjustment of portfolio b;_; to b, through re-balancing.

Finally, a portfolio learning algorithm learns sequentially a set of portfolio
vectors {b;};—_; to maximize the final cumulative wealth as well as satisfy some
risk management metrics.
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3 Methodology

In this section, we propose the novel Adaptive Peak Price with Lazy Updates
(APPLU) for short-term portfolio optimization, aiming to leverage the benefits
of peak price in wealth generation and incorporate a lazy update strategy to
reduce transaction costs.

3.1 Adaptive Peak Price

To capture the continuous depreciation information of assets and alleviate the
aggressiveness of peak price, a radial basis function is introduced to adjust the
peak price. We assume that there are m prices of assets in a time window. The

peak price is the maximum price of the asset on the most recent w periods.
The peak prices of different assets are calculated as f)i?l = MaxXo<k<w—1 p,E?_) &
(¢ =1,2,...,m) and the resulted price relative prediction is calculated as igﬂl =
. (4)

p*(tf . We evaluate the gap between peak price and the actual price of single asset

b}; proposed RBF as

i ()A(Ei_)wﬂ, ..,fc@) = exp

where the real relative price of ith asset [xgi_)w L1 xgi)} is the center and o; is

the scale parameter. The RBF quantifies the similarity between the peak price
and the actual price of the single asset in the recent time window. If relative
peak price is closer to relative actual price, then the corresponding ¢; will be
larger and peak price gains more influence in the following prediction. The center
switches as time t of real relative price goes on and keeps to newest asset status.
Then for asset ¢, the adaptive peak price is calculated as ¢; maxo<r<w—1 pgl_) k&
An example is shown in Fig. [I, when the asset price depreciates continuously
(time 3 to 13), RBF captures the depreciation and adjusts the peak price down-
ward. When the continuous depreciation ends (time 13 to 18), APP gets closer
and closer to the peak price. The relative distance from the current price vec-
tor adaptive peak price implies the increasing potential of the assets. Thus, we
combine RBFs of different assets and form the expected return as follows:

G ~(1 ~(2 ~(m
Xit1 = [¢1X§421,¢2X§+)17 ---7¢mX§+%]T- (3)

We use XtJr] as the price information input for the APPLU.

3.2 Portfolio Selection Model

To achieve higher cumulative wealth and reduce transaction costs, our portfolio
selection model is designed with the following objectives: first, we should max-
imize b" X, 1, which is the increasing potential of the whole portfolio. Denote
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Fig. 1: An example of APP (02 = 3.5,w = 5). "Price" denotes the actual asset
price, "PP" denotes the peak price of the actual asset price.

= _XtJr], then we can change the maximization to a minimization. Sec-
ond, drawing on [I8/14], we adopt an [!-regularization term and a self-financing
constraint simultaneously to concentrate the portfolio on a few assets. Third,
we introduce an [-regularization term to impose the consistency of portfolio
weights before and after each rebalance. Then the proposed portfolio selection
model is formed as

b1 = mbiangot +A1|bll1 + A2 |[b—byll,, st.1Tb=1, (4)

where the parameter Ay controls the sparsity of the portfolio, and Ay controls
the change of the portfolio.

Different from previous studies [5J2/18] which use />-norm squared ||b — b, |3,
we adopt [>-norm itself ||b — b ||, to reduce turnover rates and transaction costs.
The [?-norm allows the portfolio to be more responsive to the new predictions
encapsulated in ¢,. This means that the portfolio can adjust more fluidly to
the new information rather than being overly anchored to the past weights by.
In contrast, due to the presence of square calculations, the I2-norm squared en-
courages small portfolio changes but excessively penalizes large portfolio changes.
This characteristic, often overlooked, can significantly impact the long-term per-
formance of an investment portfolio.

Note that the above regularization term in Eq. can be linked to exist-
ing learning frameworks in both portfolio selection and machine learning. For
instance, if we omit by, the above regularization term becomes the so called
IM2-norm (A1|/bll1 + A2 ||bll,) [20] to prevents extreme positions. A similar reg-
ularization framework has also been combined with linear regression to derive
sparse-group lasso.[19].

3.3 Computation
We have developed a comprehensive computational approach for APPLU. The

APPLU algorithm, detailed in Algorithm [T} outlines the procedure followed each
trading period to update portfolio weights in response to fresh market data.
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Algorithm 1 APPLU Algorithm

Input: Given parameters w, A1, A2, {af}zl, the actual price relatives {x;_x}}—_, and

the peak price relatives {X;—x};_ ', in recent time window, the current portfolio by.
1: Calculate the RBFs {¢;}.~, by Eq. .
2: Calculate the APP vector Xt+1 by Eq. and adjust it to fit the minimization

P = —Xiq1
3: Solve Problgm and get solution byt1.
4: Normalize: byy1 = argminpea, [|b — bt

Output: The next portfolio Bt+1-

In step 2 of the algorithm, formulation is identified as a convex opti-
mization problem, primarily because the objective function comprises a sum of
convex terms, and the constraint itself is convex. This allows for efficient res-
olution using CVXPY [6] and the open-source solver ECOS [7]. In step 4, the
portfolio weights b, are normalized [§] to ensure they represent a feasible port-
folio for the upcoming trading period. Our backtest computations, conducted on
a CPU AMD-3500x, demonstrate that each round of computation is completed
in under 0.02 seconds, underscoring the model’s suitability for real-time trading
scenarios.

4 Experimental Results

In this section, we focus on the comparison studies. First, we introduce test-
ing datasets, competing portfolio strategies and criteria of evaluation. Then, we
experimentally tune the hyper parameters of APPLU and conduct ablation ex-
periments. At last, we report and analyze the results of comparison studies, and
also discuss about turnover and transaction costs.

4.1 Dataset

To ensure the reproducibility of our results and the fairness of our comparisons
to existing algorithms, we conduct extensive experiments on seven public bench-
mark datasets: DJIA [I], TSE [1], NYSE(O) [2], NYSE(N) [16], MSCI [15], SP500
[1] and ETF23. They contain real-world daily close price relatives from diverse
stock and index market, including the New York Stock Exchange (NYSE), the
Toronto Stock Exchange (TSE), the MSCI World Index (MSCI), the Dow Jones
Industrial Average (DJIA), the Standard and Poor’s 500 (SP500) and the Chi-
nese ETF market (ETF23). The detailed information about these datasets are
listed in Table [Il

4.2 Competing Portfolio Strategies

For the purpose of comparison with APPLU, five state-of-the-art portfolio selec-
tion strategies and a benchmark algorithm have been selected. The benchmark
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Table 1: Detailed Information of seven datasets

Data set Region Time Days Assets
DJIA  US 14/1/2001 - 14/1/2003 507 30
TSE ~ CA 4/1/1994 - 31/12/1998 1259 88
NYSE(O) US 3/7/1962 - 31/12/1984 5651 36
NYSE(N) US 1/1/1985 - 30/6/2010 6431 23
SP500 US 2/1/1998 - 31/1/2003 1276 25
MSCI  Global 1/4/2006 - 31/3/2010 1043 24
ETF23 CON  1/2/2021 - 1/10/2023 647 23

algorithm, namely uniform buy-and-hold (BAH), has been traditionally used as
performance benchmark in the field of investment. The strategy invests equally
in m assets at the onset and maintains this allocation throughout, often con-
sidered as a market strategy leading to the production of a market index [I5].
We use the recommended parameters in the original papers for the competing
portfolio strategies as follows:

1. OLMAR. [15] Tt takes the moving average to predict the future price. The
parameters are set as: € = 10.

2. TCO1. [I7] It proposes a [!-norm for transaction cost. The parameters are

set as: A = 10v, n = 10.

. TCO2. |[17] The parameters are set as: A = 10y, w = 4, n = 10.

4. SPOLC. [12] The short-term portfolio optimization with loss control strategy
with the window size w = 5 and the mixing parameter v = 0.025.

5. TCR. |2I] It improve price information and solving algorithm in TCO. TCR
represents the TCR2 strategy in original paper since it has better perfor-
mance. The parameters are set as: A = 10, p = 0.618.

w

The parameters for APPLU are set as: Ay = 1, A2 = 0.04, and 0?7 = 3.5. In
order to utilize RBFs, the APPLU requires at least w days of history data. To
ensure fairness, all strategies begin adopting their respective algorithm outputs
for investment from the sixth day under the transaction cost rate of 0.5%.

4.3 Evaluation Criteria

We use four metrics to evaluate the investing performance of APPLU. Cumu-
lative wealth and annualized return measure the total return of an investment
strategy. Sharpe ratio and calmar ratio measure risk-adjusted returns.

Cumulative Wealth (CW) is utilized as the key evaluation metric for the
investment performance of each portfolio selection algorithm, which is computed
by Eq. .

Annualized Percentage Yield (APY) is a widely used metric for evaluating
investment returns. It represents the average return of a strategy over the course
of a year. APY is computed as APY = CW'/Y—1, where y represents the number
of years according to n trading days. In this study, all datasets consist of daily
prices. Therefore, y is calculated as n divided by 252, which is the average number
of annual trading days.
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Fig. 2: Cumulative wealth with respect to different o2 (fix A\; = 1, A2 = 0.04), \;
(fix 02 = 3.5, A\ = 0.04) and Ay (fix 0? = 3.5,\; = 1) on three datasets. Three
columns share the same x-axis.

Sharpe Ratio (SR) serves as a widely utilized metric for evaluating risk-
adjusted returns and is defined as SR = %, where ry is the return of a
risk-free asset and is set to 0 in this paper since we do not consider a risk-free
asset, o (r5) is the standard deviation of return rs estimated by the samples 7,
in n trading period.

Calmar Ratio (CR) is a comparison of the average annual compound re-
turn and the maximum drawdown (MDD) risk, which is widely adopted in
fund management. The calculation formula is CR=APY /MDD, where MDD =
maXe(1,7) Mf\jtst , My = maxge(n,q Sk-

Turnover is a measure of the cumulative change in wealth proportion vectors
during the trading periods, and it is defined as Turnover= Zfzz [Ib: —bi1] 1.

A high turnover generates more commissions on trades placed by a broker.

4.4 Parameter Setting

We conduct a comprehensive analysis of the parameter setting of APPLU through
experiments using benchmark datasets. Similar to previous studies [I5/T2JI0],
we adopt an empirical method to determine the parameters based on their CWs
computed by Eq. . The value of w is set to 5, which aligns with previous
research [I5JT2/10] and is a commonly used time window size in stock and fu-
tures investment as it reflects the recent financial environment. With regards
to the parameters A1, A2 and o2, an initial approximation is made followed by
fine-tuning in incremental steps.

We first fix A = 1, A2 = 0.04 and change o2 between 2.5 to 4.5 and see the
cumulative wealth in different datasets. The first column in Fig. [2] show that
APPLU is stable at 02 = 3.5. Then we keep fine tune the A\; and Ay by fixing
the other two parameters. Therefore, by fixing two parameters and tuning the
remaining one, the parameters A\; = 1, Ay = 0.04, and 0? = 3.5 are determined
as the optimal values for APPLU.
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Table 2: Performance of algorithms under the transaction cost rate of 0.5%.
Metric Algorithm DJIA TSE NYSE(O) NYSE(N) SP500 MSCI ETF23

BAH 0.78 1.56 13.8 18.25 1.39 0.89 0.87
OLMAR 0.44 1.08 3.89e+08 0.82 0.28 0.44 0.16
TCO1 0.42 1.95 8.45e+07 32.11 0.22 146 0.28
CW  TCO2 0.95 9.78 5.35e+08 3.63e+03 1.69 1.48 0.44
SPOLC 0.72 5.63 4.05e+05 0.212 1.53 0.37 0.14
TCR 1.07 3.61 1.18e+10 4.52¢+03 2.17 1.51 0.59
APPLU 1.70 15.70 3.28e+11 7.98e+403 3.14 1.53 1.07
BAH -0.115 0.093 0.124 0.121 0.068 -0.027 -0.054
OLMAR -0.3320.015 1.416 -0.008 -0.223 -0.178 -0.516
TCO1 -0.353 0.143 1.257 0.146 -0.261 0.097 -0.391
APY TCO2 -0.027 0.579 1.45 0.379 0.109 0.1  -0.276
SPOLC  -0.150 0.413 0.778 -0.059 0.087 -0.215 -0.542
TCR 0.036 0.293 1.813 0.394 0.165 0.103 -0.185
APPLU 0.301 0.735 2.263 0.422 0.253 0.109 0.026
BAH -0.024 0.047 0.054 0.046 0.025 0.001 -0.013
OLMAR -0.036 0.028 0.118 0.016 -0.014 -0.02 -0.126
TCO1 -0.06 0.033 0.136 0.033 -0.034 0.028 -0.107
SR TCO2 0.009 0.059 0.139 0.056 0.028 0.028 -0.058
SPOLC  -0.008 0.0504 0.091 0.0053 0.026 -0.029 -0.153
TCR 0.021 0.045 0.132 0.056 0.0346 0.028 -0.023
APPLU 0.049 0.065 0.148 0.057 0.043 0.029 0.016
BAH -0.299 0.309 0.298 0.225 0.148 -0.042 -0.189
OLMAR -0.432 0.016 2.36 -0.008 -0.293 -0.225 -0.604
TCO1 -0.5 0.169 2.796 0.149 -0.323 0.17  -0.533
CR  TCO2 -0.061 0.7 3.453 0.39 0.252 0.167 -0.463
SPOLC  -0.218 0.536 1.250 -0.060 0.164 -0.267 -0.621
TCR 0.077 0.322 3.344 0.412 0.295 0.190 -0.340

APPLU 0.686 0.919 4.756 0.430 0.465 0.192 0.068

Table 3: Ablation experiment results. CWs of algorithms under the transaction

cost rate of 0.5%.
Algorithm DJIA TSE NYSE(O) NYSE(N) SP500 MSCI ETF23
APPLU-PP 145 1.1 5.36e110 2.14c103 2.61 1.16 0.9
APPLU-squared 0.99 14.8 5.13¢+09 6.23e+02 1.78 0.90 0.46
APPLU 1.70 15.70 3.28e+11 7.98¢1-03 3.14 1.53 1.07

4.5 Ablation Experiment

To demonstrate the effectiveness of our method, we conducted two ablation
experiments to observe the cumulative wealth performance of the model across
various datasets. Firstly, to verify the improvement effect of RBFs on peak prices,
we omitted the RBFs from the Eq. , resulting in a version named APPLU-
PP. Furthermore, to validate the superiority of unsquared /2-norm regularization
over squared [2-norm regularization, we replaced the ||b — b;||, term in the Eq.
([) with squared [>-norm ||b — bt||§, yielding a version named APPLU-squared.

The ablation study results in Table [3] reveal the APPLU significantly out-
performs its variants across various datasets. APPLU-PP and APPLU-squared
demonstrate inferior performance, underscoring the critical contributions of RBFs
for capturing market dynamics and unsquared [?-norm for flexible portfolio
adjustments. The superior cumulative wealths achieved by APPLU across all
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Fig.3: CW of different algorithms during the entire investments in NYSE(O).

datasets confirm the effectiveness of combining these techniques for short-term
portfolio optimization under transaction costs.

4.6 Comparison Studies

Table [2| provides a comprehensive comparison of our APPLU method against
various established portfolio strategies across multiple real-world datasets, under
a transaction cost scenario of 0.5%.

APPLU significantly outperformed other strategies in terms of CW, achieving
the highest values in all datasets. Cumulative wealth plots on NYSE(O) are
presented in Fig. [3| to provide a visual representation. This showcases APPLU’s
robustness and its capability to generate superior wealth returns, a critical factor
in SPO. In the APY metric, APPLU’s performance was exemplary, leading in
all datasets. This highlights its consistent ability to generate effective returns
across different market conditions, a testament to its adaptability.

The SR results further underscore APPLU’s superior risk-adjusted return
capabilities. Leading in this metric across all datasets, APPLU demonstrates
not only its profitability but also its efliciency in managing investment risks, an
essential aspect of portfolio optimization. APPLU also exhibited strong perfor-
mance in terms of CR, again outperforming other strategies in most datasets.
This indicates APPLU’s proficient risk management in relation to the returns it
generates, balancing return with maximum drawdown risks effectively.

Overall, the empirical evidence suggests that APPLU is a robust and effective
strategy for SPO, capable of outperforming established strategies across key
performance indicators.

4.7 Turnover and Transaction Costs

As depicted in Table [d] APPLU demonstrates superior performance across the
majority of datasets in terms of turnover rates. Notably, APPLU records the
lowest turnover in all datasets except TSE, which ranks the second. It demon-
strates the effectiveness of our proposed model in the turnover control and leads
to lower transaction costs.

To assess the practicality of the portfolio selection algorithms, we perform
experiments on cumulative wealth while changing the transaction cost rate r be-
tween 0.25% and 0.75%. The findings, displayed in Fig. 4l indicate that APPLU
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can strongly withstand a range of reasonable transaction costs. Additionally,
APPLU is comparable to other state-of-the-art algorithms in the most datasets.
This demonstrates that APPLU is a capable algorithm for managing transaction
costs, making it suitable for real-world financial environments.

Table 4: Turnover of algorithms under the transaction cost rate of 0.5%.

Metric  Algorithm DJIA TSE NYSE(O) NYSE(N) SP500 MSCI ETF23
OLMAR 322.6 318 339.4 313.6 325.1 336.2 312.8
TCO1 260.4 345.4 263.4 205.3 248.8 155.6 194.8
TCO2 154.6 189.9 158.1 131.2 150.5 98.1 120.5
Turnover SPOLC ~ 281.5 274.1 289.8 266.5 277.2 296 285.3
TCR 150.9 153.1 149.1 105.5 141.3 60.7 100.9
APPLU  145.3 198.8 144.9 103.2 139.3 49.5 84.2
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Fig. 4: Scalability of transaction cost in terms of cumulative wealth.

5 Conclusion

In this paper, we introduced Adaptive Peak Price with Lazy Updates (APPLU),
a novel strategy for short-term portfolio optimization. APPLU stands out by
dynamically adjusting asset allocations using radial basis functions and new lazy
update approach. Our extensive experiments across diverse real-world datasets
demonstrated that APPLU surpasses existing short-term portfolio optimization
systems in key performance metrics, including cumulative wealth and sharpe
ratio. APPLU’s low turnover rates significantly reduce transaction costs, making
it suitable for practical financial scenarios.
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