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Section 0

Overview
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§ A quadratic programming (QP) problem

– Optimization variable (or decision variable)
• 𝑤 = 𝑤!, … , 𝑤" # ∈ ℝ": portfolio weight vector

– Parameters
• 𝜇 = 𝜇!, … , 𝜇" # ∈ ℝ": expected return vector
• Σ = 𝜎$% $,%'!

"
∈ ℝ"×": return covariance matrix

• 𝜇) ∈ ℝ: minimum required return
– Etc.

• 𝟏 = 1,1, … , 1 # ∈ ℝ": vector of ones
• Short-selling is allowed

Markowitz model

minimize
1
2𝑤

!Σ𝑤

subject to 𝑤!𝜇 ≥ 𝜇"

𝟏!𝑤 = 1
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Mean-variance optimization process

§ Modern portfolio theory (MPT) investment process
(Fabozzi, Gupta, & Markowitz, 2002)
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Parameter 
estimation

Optimization

Investor profiling

Fabozzi, F. J., Gupta, F., & Markowitz, H. M. (2002).
The legacy of modern portfolio theory. The Journal of Investing, 11(3), 7-22.



Importance of parameter estimation
§ Optimal portfolio weight is sensitive to the input values

– Michaud (1989) even refers to mean-variance model as “estimation-
error maximizers”

– Broadie (1993) introduced the concept of true 
frontier, estimated frontier, and actual frontier 
(above figure is from Ceria & Stubbs (2005))
• True frontier: efficient frontiers computed using the true 

expected returns (which is unobservable in advance)
• Estimated frontier: efficient frontiers computed using the 

estimated expected returns
• Actual frontier: returns and variances of estimated frontier 

portfolios computed using true (actual) returns

– Chopra & Ziemba (1993) 
• They argued that, roughly speaking, errors in the expected returns are about 10 times 

more important than errors in the covariance matrix, 
• and errors in the variances are about twice as important as errors in the covariances
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Michaud, R. O. (1989). The Markowitz optimization enigma: Is ‘optimized’optimal?. Financial Analysts Journal, 45(1), 31-42.
Broadie, M. (1993). Computing efficient frontiers using estimated parameters. Annals of Operations Research, 45, 21-58.
Chopra, V. K., & Ziemba, W. T. (1993). The effect of errors in means, variances, and covariances on optimal portfolio choice. Journal of Portfolio Management, 19(2), 6.



Importance of parameter estimation

§ Optimal portfolio weight is sensitive to the input values
– Chung et al. (2022)

• Suggested that correlation might be more important than means
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Chung, M., Lee, Y., Kim, J. H., Kim, W. C., & Fabozzi, F. J. (2022).
The effects of errors in means, variances, and correlations on the mean-variance framework. Quantitative Finance, 22(10), 1893-1903.



Importance of parameter estimation

§ Accurately estimating the inputs (mean, variance, 
covariance of asset returns) is challenging

§ There are several approaches to this problem
– Constrain weights (upper bound, 𝐿!-norm, …)
– Improve estimates 
– Portfolio resampling
– Robust optimization 
– Stochastic programming
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Importance of parameter estimation

§ Basic concepts of various robust models
– Constraining weights, robust estimators, B-L model

– Portfolio resampling
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Importance of parameter estimation

§ Basic concepts of various robust models
– Robust optimization
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Power of machine learning

§ Traditional quantitative analysis

f(X) = a+b1X1+ b2X2+…+ bnXn + e

Intuitive and explainable
But most relations are nonlinear in real-world
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Power of machine learning

§ Machine learning

Difficult to interpret
But can learn very complex relationships
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f(X)
X1
X2
…
Xn



Power of machine learning
§ Machine learning in finance

– Empirical asset pricing or factor analysis
• Litterman and Scheinkman (1991), Kelly, Pruitt, and Su (2019), 

Lettau and Pelger (2020), Gu, Kelly, and Xiu (2020), Cong et al. 
(2021), Chen, Pelger, and Zhu (2023), Kelly, Malamud, and 
Pedersen (2023)

– Hedging and high-frequency trading
• Buehler et al. (2019), Buehler, Murray, and Wood (2022)

– High-frequency trading
• Sirignano (2019), Ning, Lin, and Jaimungal (2021) and Fang et al. 

(2021), Cont et al. (2023)
– Synthetic data generation

• Polturu et al. (2023) (https://arxiv.org/abs/2401.00081)

– More applications of machine learning in asset management 
including above references are well summarized in Lee et al. (2023)
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Lee, Yongjae; Thompson, John R.J.; Kim, Jang Ho; Kim, Woo Chang; Fabozzi, Francesco A. (2023) 
“An Overview of Machine Learning for Asset Management,” Journal of Portfolio Management, 49(9), 31-63

https://arxiv.org/abs/2401.00081


In this talk

§ Two ideas

– 1. Similarity learning and its application on portfolio optimization

– 2. Dynamic robust portfolio optimization 
via Generative Adversarial Networks (GANs)
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Hwang, Yoontae; Lee, Junhyeong; Kim, Daham; Noh, Seunghwan; Hong, Joohwan*; Lee, Yongjae* (2023) 
“SimStock: Representation Model for Stock Similarities,” 4th ACM International Conference on AI in Finance (ICAIF’23), oral presentation (top 27%)

Hwang, Yoontae; Zohren, Stefan; Lee, Yongjae* (2024)
“Temporal Representation Learning for Stocks and Its Applications on Investment Management,” working paper

Kim, Seyoung; Hong, Joohwan*; Lee, Yongjae* (2023) 
“A GANs-based Approach for Stock Price Anomaly Detection and Investment Risk Management,” 
4th ACM International Conference on AI in Finance (ICAIF’23), oral presentation (top 27%)

Kim, Jang Ho; Kim, Seyoung; Kim, Woo Chang; Fabozzi, Frank J.; Lee, Yongjae* (2024)
“Data-Driven Dynamic Robust Portfolio Optimization via Generative Adversarial Networks (GANs),” working paper



Section 1

SimStock and 
Its Application on Portfolio Optimization
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Hwang, Yoontae; Lee, Junhyeong; Kim, Daham; Noh, Seunghwan; Hong, Joohwan*; Lee, Yongjae* (2023) 
“SimStock: Representation Model for Stock Similarities,” 4th ACM International Conference on AI in Finance (ICAIF’23), oral presentation (top 27%)

Hwang, Yoontae; Zohren, Stefan; Lee, Yongjae* (2024)
“Temporal Representation Learning for Stocks and Its Applications on Investment Management,” working paper



Representation learning for stocks

§ Traditional categorization of stocks
– Country
– Industry sector
– Style (e.g., size, value)

§ They do not work well anymore due to
– Globalization (e.g., TSMC, Samsung)
– Digitalization (e.g., Amazon, Tesla)

§ We need a more comprehensive approach to define 
similarity of stocks
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SimStock

§ SimStock: Representation Learning for Stock Similarities

– Self-supervised learning (SSL)
– Temporal domain generalization
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Hwang, Yoontae; Lee, Junhyeong; Kim, Daham; Noh, Seunghwan; Hong, Joohwan*; Lee, Yongjae** (2023) 
“SimStock: Representation Model for Stock Similarities,” 4th ACM International Conference on AI in Finance (ICAIF’23), oral presentation (top 27%)



Self-supervised learning
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Self-supervised learning
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Self-supervised learning
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Temporal domain generalization
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Temporal domain generalization
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SimStock

§ SimStock: Representation Learning for Stock Similarities

– Self-supervised learning (SSL)
– Temporal domain generalization
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Hwang, Yoontae; Lee, Junhyeong; Kim, Daham; Noh, Seunghwan; Hong, Joohwan*; Lee, Yongjae** (2023) 
“SimStock: Representation Model for Stock Similarities,” 4th ACM International Conference on AI in Finance (ICAIF’23), oral presentation (top 27%)



Experiment setting
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Dataset

NYSE
NASDAQ
SSE(Shanghai Stock exchange) 
SZSE(Shenzhen Stock Exchange)
TSE(Tokyo Stock Exchange)

4,231 stocks

1,408 stocks
1,696 stocks
3,882 stocks

Time period

Training period : Jan 01, 2018 to Dec 31, 2021
Reference period : Jan 01, 2022 to Dec 31, 2022
Test period : Jan 01, 2023 to Dec 31, 2023

Baseline models

Corr1      : past one-year returns correlation
Corr2      : training period returns correlation
Peer : list of similar stocks provided by 

Google, Yahoo Finance, and Financial Modeling Prep
TS2VEC : Deep learning based state-of-the-art method

(US stocks)



Can SimStock find similar stocks?
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Figure 1. Performance of models in one-to-one and one-to-many scenarios for finding similar stocks.



Application to portfolio optimization
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Maximize : 𝑤!𝜇 − 𝜓1!|𝑤 − 𝑤"|

Subject to : 𝑤!Σ𝑤 ≤ 𝜎#$%&'#( ,
𝑤!1 = 1 ,
0 ≤ 𝑤) ≤ 1 for all 𝑘 = 1,2, . . , 𝑁

Portfolio’s expected return - Transaction costs

Portfolio variance must not exceed predetermined risk target 

Previous portfolio weights



Application to portfolio optimization

§ Benchmark models
– SimStock Embedding (SS)          (ours)
– Historical Covariance (HC)
– Shrinkage Method (SM)             (Ledoit et al., 2003)
– Gerber Statistic (GS)                   (Gerber et al., 2021)
– TS2VEC (TS)                                   (Yue et al., 2022)

§ For SimStock,
– We use SimStock embeddings to calculate similarity between 

stocks and replace correlation matrix in portfolio optimization
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Application to portfolio optimization
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Figure 3 Ex-post efficient frontiers displaying annualized return and volatility of portfolios optimized for different risk targets. 
The black vertical dotted lines represent the average volatility of the S&P500 and JPX Prime 150, respectively



Application to portfolio optimization
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Application to portfolio optimization
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Corr# − Corr$%&%'( )
Corr# − Corr*+,& )



Summary

§ SimStock can be useful in modeling stock similarities

§ They can be applied to various tasks in investment 
management
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Section 2

Dynamic Robust Portfolio Optimization
via Generative Adversarial Networks (GANs)
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Kim, Seyoung; Hong, Joohwan*; Lee, Yongjae* (2023) 
“A GANs-based Approach for Stock Price Anomaly Detection and Investment Risk Management,” 
4th ACM International Conference on AI in Finance (ICAIF’23), oral presentation (top 27%)

Kim, Jang Ho; Kim, Seyoung; Kim, Woo Chang; Fabozzi, Frank J.; Lee, Yongjae* (2024)
“Data-Driven Dynamic Robust Portfolio Optimization via Generative Adversarial Networks (GANs),” working paper



MV Optimization

§ Modern Portfolio Theory (MPT)
– Originated from the pioneering work of Markowitz (1952)

– Mathematically established the concept of diversification
• Trade-off relationship between risk and return

– It has been widely used for asset allocation in practice (Kim et 
al., 2020)
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Minimize Risk, Maximize Return

min! 𝑤"𝛴𝑤

s. t. 𝟏#𝑤 = 1

𝑤"𝜇 ≥ 𝜇$

𝑤 ∈ ℝ! = portfolio weight vector,

𝜇 ∈ ℝ! = mean return vector of 𝑛 securities,

𝛴 ∈ ℝ!×! = covariance matrix of 𝑛 securities.



Limitation of MV Optimization

§ Michaud (1989): 
“MV optimization is estimation-error maximizers”

– MV optimization gives significant weights to securities with 
large estimated returns, negative correlations and small 
variances, which most likely have large estimation errors

§ MV optimization is too sensitive to errors in input 
parameters

33UNIST Financial Engineering Lab. 
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Problems of Error Sensitiveness

§ Unstable optimal solution
– Small change in inputs can cause large changes in the solutions

– Klein and Bawa (1976)
• Assume stock return has normal distribution with parameter θ
• MV optimal solution under estimated θ differ from unconditional 

MV optimal solution 

– Best and Grauer (1991)
• Errors in mean return significantly change the composition of 

optimal portfolio

34UNIST Financial Engineering Lab. 
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Problems of Error Sensitiveness

§ Poor performance

– Jobson and Korkie (1980)
• Equal weight portfolio might outperform MV optimal portfolios 

due to estimation errors

– Broadie (1993)
• The actual performances of optimal portfolios with estimated 

parameters are below those of optimal portfolios with true 
parameters

35UNIST Financial Engineering Lab. 
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Importance of parameter estimation

§ Accurately estimating the inputs (mean, variance, 
covariance of asset returns) is challenging

§ There are several approaches to this problem
– Constrain weights (upper bound, 𝐿!-norm, …)
– Improve estimates
– Portfolio resampling
– Robust optimization 
– Stochastic programming
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Importance of parameter estimation

§ Basic concepts of various robust models
– Constraining weights, robust estimators, B-L model

– Portfolio resampling
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Importance of parameter estimation

§ Basic concepts of various robust models
– Robust optimization
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Robust optimization

§ Robust optimization

– Constructing results that are insensitive to small deviations 
from the model assumptions (or input parameters)

– First established in 1950s. Since then, it has been applied in 
statistics, operations research, electrical engineering, control 
theory, finance, logistics, etc.
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Markowitz model

§ Markowitz mean-variance portfolio optimization

– Simplest feasible set would be
• Ω = 𝑤 ∈ ℝ* 𝑤!𝟏 = 1}
• One may add more constraints

– In reality, it is difficult to accurately measure mean, variance, 
and covariance of asset returns
• 𝝁 and 𝜮 are uncertain parameters

UNIST Financial Engineering Lab. 
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min
-∈/

𝑤0Σ𝑤 − 𝜆𝑤0𝜇
𝑤 ∈ ℝ!: portfolio weight
Σ ∈ ℝ!×!: covariance matrix
𝜇 ∈ ℝ!: expected return
𝜆 ∈ ℝ: risk-preference
Ω ⊆ ℝ!: set of feasible portfolios



Robust portfolio optimization

§ Robust portfolio optimization

– Find the best solution among the solutions that satisfy the 
constraints for all realizations of the uncertain components 

– That is, find a solution that has the best solution under its 
worst case
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min
-∈/

max
(2,4)∈𝒰

𝑤0Σ𝑤 − 𝜆𝑤0𝜇
𝑤 ∈ ℝ!: portfolio weight
Σ ∈ ℝ!×!: covariance matrix
𝜇 ∈ ℝ!: expected return
𝜆 ∈ ℝ: risk-preference
Ω ⊆ ℝ!: set of feasible portfolios
𝒰 ⊆ (ℝ! , ℝ!×!): possible values for 𝜇 and Σ

worst-case



Uncertainty sets

§ Assume that an uncertain parameter has its value within a set
– And it is called an uncertainty set

– Below are some examples of uncertainty sets of 𝜇
• Scenario uncertainty: {𝜇 + , 𝜇 ( , … , 𝜇 , }

• Box (interval) uncertainty: 𝜇 𝜇- − ;𝜇. ≤ 𝛿., 𝑖 = 1, … , 𝑛}

• Ball uncertainty: 𝜇 𝜇 − ;𝜇 ( ≤ 𝛿}

• Ellipsoidal uncertainty: 𝜇 Σ/
0AB(𝜇 − ;𝜇)

(
≤ 𝛿}

• Budget uncertainty: 𝜇 𝜇 − ;𝜇 1 ≤ 𝛿, 𝜇 − ;𝜇 + ≤ 𝛾}
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Robust portfolios under box uncertainty

§ Uncertainty set 𝒰7 𝜇̂ = 𝜇 𝜇8 − 𝜇̂8 ≤ 𝛿8, 𝑖 = 1,… , 𝑛}

– Normality of asset returns can be assumed (or by CLT) for 
computing the value of 𝛿

– Separate bound can be set for each asset

UNIST Financial Engineering Lab. 
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min
-∈/

max
2∈𝒰5 92

𝑤0Σ𝑤 − 𝜆𝑤0𝜇
𝑤 ∈ ℝ!: portfolio weight
Σ ∈ ℝ!×!: covariance matrix
𝜇 ∈ ℝ!: expected return
𝜆 ∈ ℝ: risk-preference
Ω ⊆ ℝ!: set of feasible portfoliosmin

-∈/
	𝑤0Σ𝑤 − 𝜆(𝜇̂0𝑤 − 𝛿0|𝑤|)



Robust portfolios under box uncertainty

§ Uncertainty set 𝒰7 𝜇̂ = 𝜇 𝜇8 − 𝜇̂8 ≤ 𝛿8, 𝑖 = 1,… , 𝑛}

– Note that it is a quadratic programming problem
UNIST Financial Engineering Lab. 
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min
-∈/

max
2∈𝒰5 92

𝑤0Σ𝑤 − 𝜆𝑤0𝜇
𝑤 ∈ ℝ!: portfolio weight
Σ ∈ ℝ!×!: covariance matrix
𝜇 ∈ ℝ!: expected return
𝜆 ∈ ℝ: risk-preference
Ω ⊆ ℝ!: set of feasible portfoliosmin

-∈/
	𝑤0Σ𝑤 − 𝜆(𝜇̂0𝑤 − 𝛿0|𝑤|)

min
-∈/

	𝑤0Σ𝑤 − 𝜆𝜇̂0𝑤 + 𝜆𝛿0(𝑤: +𝑤;)

𝑠. 𝑡. 𝑤 = 𝑤: −𝑤;
𝑤: ≥ 0, 𝑤; ≥ 0



Robust portfolios under box uncertainty

§ Uncertainty set 𝒰7 𝜇̂ = 𝜇 𝜇8 − 𝜇̂8 ≤ 𝛿8, 𝑖 = 1,… , 𝑛}

– Note that it is a quadratic programming problem
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min
-∈/

max
2∈𝒰5 92

𝑤0Σ𝑤 − 𝜆𝑤0𝜇
𝑤 ∈ ℝ!: portfolio weight
Σ ∈ ℝ!×!: covariance matrix
𝜇 ∈ ℝ!: expected return
𝜆 ∈ ℝ: risk-preference
Ω ⊆ ℝ!: set of feasible portfoliosmin

-∈/
	𝑤0Σ𝑤 − 𝜆(𝜇̂0𝑤 − 𝛿0|𝑤|)

min
-∈/

	𝑤0Σ𝑤 − 𝜆𝜇̂0𝑤 + 𝜆𝛿0(𝑤: +𝑤;)

𝑠. 𝑡. 𝑤 = 𝑤: −𝑤;
𝑤: ≥ 0, 𝑤; ≥ 0

Then, how can we set the values of 𝜹𝒊?

Also, it should be time-varying considering 
the huge volatility in financial markets.



Research objective

§ Develop a robust portfolio optimization model

– That can adjust the size of uncertainty set dynamically

– Using a data-driven approach

UNIST Financial Engineering Lab. 
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Research objective

§ Develop a robust portfolio optimization model

– That can adjust the size of uncertainty set dynamically

– Using a data-driven approach

In this regard, we use Generative Adversarial Networks (GANs)
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Generative Adversarial Networks
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• Generative Adversarial Network (GAN) is an advanced generative model that creates realistic synthetic data by 
competing two neural networks against each other in an adversarial setting.

• Generator, a neural network, creates synthetic data by mapping from a latent space to the training data distribution. 
It aims to generate data that resembles real data and deceive the discriminator.

• Discriminator, another neural network, distinguishes between synthetic data from the generator and actual data,
determining the origin of input data.

Latent Space Z

Noise

Generator 
G Fake data

Real Data 
Space X 

Discriminator
D Is D Correct?

Backpropagation



GANs in Finance
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Generating Financial Data 

49

Predicting Stock Price 

§ Quant GANs (Wiese et al, 2020)
§ Generate financial time series dependence 

characteristics via TCN network-based GANs.

§ Fin-GAN (Vuletić et al, 2023)
§ Modify the Generator’s loss function, transforming 

GANs into a supervised learning framework for 

classifying the direction of stock price movements.

§ Tail-GAN (Cont et al, 2022)
§ Generate market scenarios reflecting risk measures 

such as VaR and expected shortfall (ES).



GAN-based Anomaly Detection
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Image 
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Time-series 

§ AnoGAN (Schlegl et al., 2017)
§ Difficulty in learning high-dimensional image data

§ Low diversity of generated images

§ TAnoGAN (Bashar & Nayak, 2020)
§ As the input is time-series data, it is used by applying a 

time window to the sequence

§ MAD-GAN (Li et al., 2020)
§ Multivariate time-series data



Data
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• Adjusted close price of S&P500 index from yahoo finance

• Training period : 2000/01/01 ~ 2019/12/31 (excluding 2007~2009) 

• Testing period : 2021/07/01 ~ 2023/08/30 (including global downturn in 2022)

• Validation period : 2007/01/01 ~ 2009/12/31 (including global crisis)

• Anomaly signal lookback periods searching: 2020/01/01 ~2021/06/30 (Including COVID-19) 

Data description 

Training set Training setValidation
set Look-

back
Periods 
of MA

searching
set

Test set
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• Adjusted close prices of 11 S&P500 industry sector indices from yahoo finance

• Training period : 2000/01/01 ~ 2019/12/31 (excluding 2007~2009) 

• Testing period : 2021/07/01 ~ 2023/08/30 (including global downturn in 2022)

• Validation period : 2007/01/01 ~ 2009/12/31 (including global crisis)

• Anomaly signal lookback periods searching: 2020/01/01 ~2021/06/30 (Including COVID-19) 

Data description 

Data



Data Pre-processing
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• When working with financial-time series data, such as stock prices, we transform it into log-returns.

• First, it helps to view the data from a stationary perspective.

• Second, it is easier to compute and work with than raw price data.

• Finally, it can help correct for non-linearity in the data, making it a useful tool in financial analysis.

Log-return



Paths for the generated sequence data
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• The latent sample 𝑧#,% is updated via 50 backpropagation iterations to make G(𝑧#,%) as similar as possible to real data x.

• During the sampling of 𝑧#,%, the process involves resampling 3 times and selecting one with the lowest anomaly loss. 

• The generated paths showed  similar patterns to the actual data movement during the test period.

• However, paths showed a very different patterns during periods of extreme market instability such as the COVID shock.

Generated paths

Before the COVID-19 pandemic During the COVID-19 pandemic

Log 
return

Log 
return

Sequence length Sequence length



Analysis of anomaly score
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Empirical Analysis of Anomaly Scores

Anomaly score & S&P500 Distribution of S&P500 
Returns with Anomaly Scores

• The correlation coefficient between the anomaly score and S&P500 price data was -0.5295, indicating a quite strong 

inverse relationship.

• During the bottom 10% anomaly score days, the distribution of S&P500 returns are more concentrated around the 

center, indicating small market volatility.

• During the top 10% anomaly score days, the distribution of S&P500 returns exhibit much more left-skewed distribution.



Main idea obtained from anomaly score

UNIST Financial Engineering Lab. 
(https://felab.unist.ac.kr) 56

Key findings from analysis of anomaly score

• Through the previous analysis on the anomaly score, we found that the stock price tends to fall and 

investment risk increases when the anomaly score is high. 

• Therefore, we assume that the stock price is unstable when the anomaly score is high, and we 

can buy assets when the score is low and sell them when the score is high to prevent losses.
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Anomaly Score as a Trading Signal
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Moving average

Voting sector signal strategy

Sell signal

Buy 
signal

Long-term MA score
Short-term MA score• It is discovered that the price tends to move after a change in ano

maly score, and a high anomaly score indicates market instability.

• To incorporate this insight, we calculated short-term and long-term 

moving averages to the anomaly score, and only bought when the 

short-term MA score exceeds the long-term MA score. We sold all 

holdings otherwise.

Evaluation Metrics

1) Train GANs for each of the S&P 500 sector indices

2) Anomaly scores are derived for each of 11 sectors.

3) Aggregate 11 anomaly scores to derive the final 

signal

4) Final anomaly signal triggered when sector votes 

(anomaly signals) exceed thresholds obtained from

§ Equal-weighted voting

§ Market cap weighted voting

• Cumulative return 
𝐶& = ∏#'(

! 1 + 𝑅# − 1
• Annualized return

𝐴& = (1 + 𝐶&)(/*−1, where c = number of years

• Annualized volatility  𝜎& =
(
!
∑#'(! 𝜎&!

+ × 252

• Sharpe ratio 𝑆# =
$"%##
&"

,where 𝑅!=risk-free rate

• Maximum Drawdown (MDD) 
MDD(%)  = -./0 1/23. 4567.89 1/23.-./0 1/23. ×100

* In this study, 𝑅! is set to 0 for simplicity. 



Robust Portfolio Optimization via Anomaly Score
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Idea

Baselines

• From the previous experiment, we obtained anomaly scores for 11 sectors. 

• We will utilize these scores to construct a robust sector portfolio by proportionall

y adjusting the size of the uncertainty set based on the daily anomaly score

s of each sector.

• 𝛿, which determines the uncertainty set size, is calculated as follows:
where 𝜎 is standard deviation of asset and 𝑇 is the total length of observed day

• We adjust 𝛿:*9to be low, high, or a medium value based on the anomaly score.

1) S&P 500 Index 

2) Mean-Variance Portfolio Optimization Model (MVO)

3) Vanilla Robust Portfolio Optimization Model (RO)

Medium uncertainty set

Medium 
anomaly 

score

1

Wide uncertainty set

High 
anomaly 

score

Narrow uncertainty set

Low 
anomaly 

score
𝛿 = 𝑍(;<"#$

+
O
𝜎
𝑇

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤"𝛴𝑤 − 𝜆𝑤"𝜇
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤R +⋯+𝑤S = 1

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤)𝛴𝑤 − 𝜆𝜇̂)𝑤 + 𝜆𝛿)(𝑤* + 𝑤%)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤+ +⋯+𝑤! = 1

𝑤 = 𝑤* − 𝑤%
𝑤* ≥ 0,𝑤% ≥ 0

𝑤 ∈ ℝ$: portfolio weight
Σ ∈ ℝ$×$: covariance matrix
𝜇 ∈ ℝ$: expected return
𝜆 ∈ ℝ: risk-preference
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Evaluation results

Portfolio construction rules 

Anomaly Score-based Robust Portfolio Optimization

• The sum of asset weights equals 1, with no single asset  e

xceeding 40%.

• Monthly rebalancing conducted at the end of each month.

• Portfolio weight optimization performed for each model.

• Transaction cost set at 0.5% per rebalancing.

• Risk aversion coefficient 𝝀=0.5, Initial delta percent 𝛿&'( =0.5,  

• Mean-variance lookback period =12 months, Anomaly score lookback period = 3 months

• For anomaly score-based robust optimization:

• Monthly, adjust 𝛿&'( for each sector by checking how far they deviate from the average of the anomaly score's lookback period

• Set 𝛿&'( =0.1 if below 90% of the average anomaly score

• Set 𝛿&'( = 0.9 if above 110% of the average anomaly score

Parameter setting

S&P500 MVO RO Anomaly score
-based RO

Return 1.71% 5.07% 2.97% 5.60%

Volatility 19.07% 18.57% 18.41% 18.44%

SR 0.0897 0.2731 0.1614 0.3037

MDD -25.43% -17.44% -17.94% -16.59%
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Portfolio construction rules 

S&P500 MVO RO Anomaly score
-based RO

Return 1.71% 5.07% 2.97% 5.60%

Volatility 19.07% 18.57% 18.41% 18.44%

SR 0.0897 0.2731 0.1614 0.3037

MDD -25.43% -17.44% -17.94% -16.59%

Anomaly Score-based Robust Portfolio Optimization

• All portfolio optimization models recorded higher final cumulative returns than the S&P 500, representing the market.

• Anomaly score-based RO portfolio achieved the highest cumulative return, annualized return, and Sharpe ratio.

• Notably, it had the lowest MDD, especially showing better loss mitigation from May to July 2023 compared to other models.

• Our method demonstrates superior performance in managing portfolio risk while outperforming the market index in terms of returns.

• The sum of asset weights equals 1, with no single asset  e

xceeding 40%.

• Monthly rebalancing conducted at the end of each month.

• Portfolio weight optimization performed for each model.

• Transaction cost set at 0.5% per rebalancing.



Weights for risk aversion coefficient 𝝀
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𝝀 Benchmarks Return Volatility Sharpe ratio MDD

S&P500 1.71% 19.07% 0.0897 -25.43%

MVO 1.94% 17.65% 0.1099 -18.06%

0.2 RO 1.04% 17.39% 0.0601 -18.10%

0.2 Anomaly 
score-based RO 3.20% 17.46% 0.1832 -16.98%

MVO 5.07% 18.57% 0.2731 -17.44%

0.5 RO 2.97% 18.41% 0.1614 -17.94%

0.5 Anomaly 
score-based RO 5.60% 18.44% 0.3037 -16.59%

MVO 6.41% 18.76% 0.3417 -17.41%

0.8 RO 4.04% 18.61% 0.2171 -17.81%

0.8 Anomaly 
score-based RO 5.40% 18.66% 0.2892 -16.59%

Parameter Setting and Results
• The parameter 𝜆 indicates the investor's risk preference: a high value signifies risk-taking, while a low value means risk aversion.

• Initial delta percent 𝛿&'( =0.5 , Mean-variance lookback period =252, Anomaly score lookback period = 63

• High threshold = average anomaly score * 1.1, Low threshold = average anomaly score * 0.9

• Results : Our method outperformed in terms of return and Sharpe ratio at 𝜆=0.2, 𝜆=0.5 and maintained the lowest MDD at 𝜆=0.8.

• Our method is more robust to different risk preferences than the traditional robust portfolio optimization.

Risk taking

Risk averse



Conclusion and future work

§ Used GANs to make robust portfolio optimization more flexible
– Compared to static robust portfolio optimization,

it could improve returns with minimal increment in risk

§ The current work is done only for box uncertainty sets
– We are extending this work for

• Ellipsoidal uncertainty sets
› Which is equivalent to covariance shrinkage estimators (Yin, Perchet, 

and Soupé, 2021)
• Gerber statistics (Gerber, Markowitz, Ernst, Miao, Javid, & Sargen, 2022)

› A simplified version of covariance matrix which can be helpful for 
mitigating sensitivity of MV optimization

§ Also, we will test them on style portfolios as well
– 6 portfolios on size & book-to-market (by Kenneth French)
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IJCAI-24 Workshop on 
Recommender Systems in Finance (Fin-RecSys 24)

§ Date: August 3-5, 2024 (TBD)

§ Paper submission deadline: May 4, 2024

§ Author notification: June 4, 2024

§ Location: Jeju, Republic of Korea

§ Organizers

John R.J. Thompson

University of 
British Columbia

Yongjae Lee

UNIST
(Lead Organizer)

Thomas De Luca

Vanguard

https://sites.google.com/view/fin-recsys2024/

Dhagash Mehta

BlackRock

Richard Mccreadie

University of Glasgow

Jaesik Choi

KAIST

Min Hee Kim

Hana Institute 
of Technology
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Advertisement

§ Guest editors

Matt Davison (Western University, Canada)
Yongjae Lee (Ulsan National Institute of Science and Technology)
Dhagash Mehta (BlackRock, Inc.)
Alberto G. Rossi (Georgetown University)
John R.J. Thompson (University of British Columbia, Canada)
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Thank you for listening!


